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LElTER TO THE EDITOR 

Exact solution of the N-dimensional generalized 
Dirac-Coulomb equation 

R S Tutik 
Department of Physics, Dniepropetrovsk State University, Dniepropetrovsk, SU-320625, 
Ukraine 

Received 20 January 1992 

Abstract. An exact solution to the bound state problem for the N-dimensional generalized 
Dirac-Coulomb equation, whose potential contains both the Lorentr-vector and Lorentz- 
scalar terms of the Coulomb form, is obtained 

Recently, various (I/N)-expansion procedures, where N is the number of spatial 
dimensions, have been suggested to obtain analytical expressions for Dirac eigenvalues 
and eigenfunctions (Miramontes and Pajares 1984, Roychoudhuri and Varshni 1987, 
1988, 1989, Panja and Dutt 1988, Atag 1989, Roy and Roychoudhuri 1990, Panja ef 
a1 1990, Stepanov and Tutik 1991). In common practice an opportunity to examine 
the applicability and accuracy of one or another approximation scheme is mainly 
provided with the solvable examples. As regards the Dirac equation, the exact solutions 
are avaiiabie oniy for a few speciai cases (Berestetskii et ai i97i, Bagrov et ai i9Sij. 
I n  N space dimensions the scope of such examples is, in essence, limited to the 
Coulomb potential which is considered as the time component of a Lorentz four-vector 
(Joseph 1967, Coulson and Joseph 1967, Wong 1990). However, a Lorentz-scalar 
interaction is of great importance in the context of the relativistic quark model. It is 
employed for describing magnetic moments (Bogoliubov et a/ 1965, Lipkin and Tav- 

quarkonium confining potentials (Critchfield 1975, Bunion and Li 1975). Therefore 
the search for exact solutions to problems concerned with the scalar interaction takes 
on special significance. 

The purpose of this letter is to show that the N-dimensional generalized Dirac- 
Coulomb equation, involving a Coulomb potential in the form of a superposition of 
the Lorentz-vector and Lorentz-scalar terms, has an exact solution. 

1. Radial equations. We study the bound state problem for a single fermion moving 
in an attractive central potential. This potential contains both the time component of 
a Lorentz four-vector, V,( r )  = - b /  r, just like the Coulomb potential of the hydrogenic 
atom, and the Lorentz-scalar term, V,(r) = -a /r .  Then the N-dimensional generalized 
Dirac-Coulomb equation we wish to solve is 

!&!id.. 1965, Bog0!i??hav 1972) and avoiding the Kleil! paradox rise!! from the 

where the notation of Joseph (1967), Coulson and Joseph (1967) is used. 
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Accepting the next representation of the eigenfunction Vmlm : 

for the radial equations we have (Coulson and Joseph 1967) 

where x = s ( N + 2 j - 2 ) / 2  is the invariant of the N-dimensional Dirac equation, with 
j = I - s/2 and s = * I  denoted the sign of x. In what follows, we shall put h = c = 1 
and consider only positive values of the energy, i.e. the ‘particle’ case. We intend to 
obtain the solutions to equation (3) with the standard procedure described in (Berestet- 
skii er al 1971). 

Let us change r to the dimensionless variable p with p = 2r(m2- E2)’ l2  = 2pr. To 
incorporate the regular behaviour of the radial functions at the origin we write 

(QI(P)* Qh)) (4) g ( p ) ) = * C  1 *- e - ~ / 2 p ~ - ( N - l ) / 2  

f ( P )  
where y = ( , y 2 + a 2 - b 2 ) 1 i 2 a 0 .  

The system (3) is transformed then into 
n E + b m )  Q2 0 

PQ: + ( Y -?? Q1+ (x -- 
P 
aE + bm 

F 
- .) q2+ (x +--) QI = 0. 

Eliminating Q2 and Q ,  , respectively, leads to our basic equations 

which have the identical form with the equation for the hypergeometric confluent 
function ,Fl (a ,  p ,  p )  (Buchholz 1953) 

pF”+(P - p ) F ‘ - a F  = O .  (7) 
Therefore, we obtain 

However the coefficients A and B are not independent. Considering equations ( 5 )  
at p = 0 and making use of the property: ,F , (a ,  p ,  0) = 1, it is observed that 
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2. Energy eigenvalues. For the confluent hypergeometric function ,F,(a,  p, p )  to 
terminate, its first argument a should be a negative integer. Hence we must put 

n n = O , 1 , 2  ,.... _ -  am + bE 
I.L 

y--- 

Omitting the standard discussion (Berestetskii et al 1971), we just present the final 
result. Thus, the energy spectrum, we have obtrained for the bound states of the 
N-dimensional generalized Dirac-Coulomb equation, is written (with h and c restored) 
as 

mc2 
E =  ( y + i)’+ ( b / h c )  2 [ ( y + & ( y +  i)*- ( a / h c ) 2 +  ( b / h ~ ) ~ -  a b / (  h ~ ) ~ ]  (11) 

where 

0, 1 , 2 , .  . . s=-1 
1 , 2 , 3 , .  . . s = l  

i= n f ( s + l ) / 2 =  

and n denotes the radial quantum number. 

(Coulson and Joseph !%?, Wong ! B O ,  S!cpenav 2nd m t i k  !oo!) 
For the pure vector potential ( a  = 0, b # 01, this reproduces the known expression 

(b / f i c )2  E = m c 2  I +  [ ( i+Jx2-  (b /hc )2 ’2  

Retaining only the scalar term (a # 0, b =O), we find 

From equation (13) it is seen that, contrary to the pure vector case, the pure scalar 
potential may be of arbitrary high strength. For a superposition of vector and scalar 
potentials, the square root in the definition of the quantity y becomes imaginary unless 
,y> b2-a2,  causing the breakdown of the bound-state solution. 

Note too that the presence of the scaiar term in the potential does not remove the 
energy spectrum degeneracy inherent in the hydrogen atom. 

3. Radial eigenfunctions. It is known (Buchholz 1953), that that the confluent 
hypergeometric function is connected with the generalized Laguerre polynomial as 
follows: 

Hence, the radial solution we have derived can be expressed as 

r ~ ~ + i ) ~ !  
r ( 2 ? + n + i )  

where for convenience of notation we use n for 5. 
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Let us obtain the normalization constant. The angular parts of the wavefunctions 

~om(g’(r)+f2(r))rN-1dr= 1 (16) 

are already normalized. The radial parts are normalized according to the condition 

which in terms of the dimensionless variable p = 2pr becomes 

Iom(g’(p)+f2(p))pN-1 dp=(2wIN. (17) 

From any of the standard textbooks on special functions (see for instance Tutik 1983) 
we have 

Therefore the normalization constant A should read 

(18) 

Finally, our solution is 

_. Notice inat in the case of the pure vector potentiai in three dimensions, this 
expression coincides with the known solution to the Dirac-Coulomb problem (Berestet- 
skii et a1 1971). 

To summarize, we obtain an exact solution of the N-dimensional generalized 
Dirac-Coulomb equation whose potential consists of the Lorentz-scalar and Lorentz- 
vector terms. Aside from the theoretical significance, this result will favour for better 
understanding the contribution of the Luscher term appeared in the string model 
potential (Liischer 1981, Fishhane et al 1986, Braaten and Tse 1987, German and 
Kleinert 1989), which will be published elsewhere. 

The author is grateful to Professors A P Kobushkin, B V Struminsky and G M Zinovjeb 
for the useful discussions conceming the Lorentz-scalar interaction. 
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